hpc-gpu-python
CÁLCULOS DE PYTHON USANDO GPU
Existen buenos tutoriales y libros que explican cómo programar Python para que use GPU.
El código siguiente add_values.py suma cien mil elementos:
import numpy as np from timeit import default_timer as timer from numba import vectorize # This should be a substantially high value. On my test machine, this took # 33 seconds to run via the CPU and just over 3 seconds on the GPU. NUM_ELEMENTS = 100000000 # This is the CPU version. def vector_add_cpu(a, b): c = np.zeros(NUM_ELEMENTS, dtype=np.float32) for i in range(NUM_ELEMENTS): c[i] = a[i] + b[i] return c # This is the GPU version. Note the @vectorize decorator. This tells # numba to turn this into a GPU vectorized function. @vectorize(["float32(float32, float32)"], target='cuda') def vector_add_gpu(a, b): return a + b; def main(): a_source = np.ones(NUM_ELEMENTS, dtype=np.float32) b_source = np.ones(NUM_ELEMENTS, dtype=np.float32) # Time the CPU function start = timer() vector_add_cpu(a_source, b_source) vector_add_cpu_time = timer() - start # Time the GPU function start = timer() vector_add_gpu(a_source, b_source) vector_add_gpu_time = timer() - start # Report times print("CPU function took %f seconds." % vector_add_cpu_time) print("GPU function took %f seconds." % vector_add_gpu_time) return 0 if __name__ == "__main__": main()
En este caso se usa numba que sirve para compilar el código de Python para ejecutar con CUDA.
Para su ejecución en el HPC UO se puede usar el script add_values.sl:
#!/bin/bash #SBATCH --partition=gpu #SBATCH --job-name=addValue #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --gres=gpu:m10:1 #SBATCH -o slurm.%N.%j.out # STDOUT #SBATCH -e slurm.%N.%j.err # STDERR # Cambiar al directorio de envío cd $SLURM_SUBMIT_DIR module load CUDA/10.2 module load Python/3.7.0-foss-2018b # Ejecutar el programa python add_values.py
hpc-gpu-python.txt · Última modificación: 2020/11/30 14:00 por Beatriz Valdés Díaz